Electron-phonon Coupling in the $^4T_{2g}$ Excited Electron State of Cs_2GeF_6 : Mn^{4+}

N. M. Avram and M. G. Brik^a

Department of Physics, West University of Timisoara, Bd. V. Parvan 4, Timisoara 300223, Romania ^a Fukui Institute for Fundamental Chemistry, Kyoto University, 34–4, Takano Nishihiraki-cho, Sakyo- ku, Kyoto 606–8103, Japan

Reprint requests to Dr. M. G. B., e-mail brik@fukui.kyoto-u.ac.jp

Z. Naturforsch. **60a**, 54 – 60 (2005); received September 18, 2004

In the present paper we report on an analysis of the fine structure of the first excited quartet ${}^4T_{2g}$ of Mn^{4+} ions which occupy the octahedral site in the Cs_2GeF_6 host crystal. The dynamic ${}^4T_{2g} \otimes (e_g + t_{2g})$ Jahn–Teller effect is considered in details, including the Ham effect of the reduction of the spin-orbit splitting and displacements of the ligands due to the combined effect of the a_{1g} and e_g normal modes of the $[MnF_6]^{2-}$ octahedral complex. The electron-phonon coupling constants are evaluated using the experimental spectroscopic data. The value of the Jahn–Teller stabilization energy $E_{JT} = 438 \text{ cm}^{-1}$ for the considered complex is estimated from both the Ham effect and the potential energy surface of the ${}^4T_{2g}$ excited state.

Key words: Laser Crystals; Electron-phonon Coupling; Jahn-Teller Effect.